Nitroxyl (HNO), a one-electron reduction product of nitric oxide, demonstrates distinct biological and pharmacological activities. Here we designed a bioluminescent turn-on probe, HNO-8, that could be used to visualize HNO without the need for excitation light. HNO-8 was prepared by caging 2-hydroxyethyl luciferin with a triphenylphosphine unit, in which 2-hydroxyethyl luciferin as a novel substrate of firefly luciferase was characterized by stronger and more sustained bioluminescent signals than the most popular substrates of d-luciferin and 6'-aminoluciferin. In vitro experiments showed that HNO-8 could selectively respond to HNO generated from Angeli's salt(AS) in the range 1-50 μM, with a limit of detection of 0.196 μM. The probe was successfully applied for visualizing HNO in luciferase-transfected Huh7 cancer cells. We envision that HNO-8 could be used as a powerful bioluminescent sensor for researching HNO biological roles.
Keywords: 2-hydroxyethyl luciferin; bioluminescent imaging; living cells; nitroxyl.
© 2020 John Wiley & Sons, Ltd.