Chemical vapor deposition (CVD) has become a promising approach for the industrial production of graphene films with appealing controllability and uniformity. However, in the conventional hot-wall CVD system, CVD-derived graphene films suffer from surface contamination originating from the gas-phase reaction during the high-temperature growth. Shown here is that the cold-wall CVD system is capable of suppressing the gas-phase reaction, and achieves the superclean growth of graphene films in a controllable manner. The as-received superclean graphene film, exhibiting improved optical and electrical properties, was proven to be an ideal candidate material used as transparent electrodes and substrate for epitaxial growth. This study provides a new promising choice for industrial production of high-quality graphene films, and the finding about the engineering of the gas-phase reaction, which is usually overlooked, will be instructive for future research on CVD growth of graphene.
Keywords: ab-initio calculations; chemical vapor deposition; gas-phase reactions; graphene; structure elucidation.
© 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.