The human prefrontal cortex (PFC) processes complex sensory information for the elaboration of social behaviors. The non-invasive neuroimaging technique near-infrared spectroscopy (NIRS) identifies hemodynamic changes and concentration of oxygenated (HbO2) and deoxygenated (HHb) hemoglobin in the cerebral cortex. We studied the responses detected by NIRS in the right and left PFC activation of 28 participants (n = 14 adult young females and males) while processing social/emotional facial expressions, i.e., in conscious perception of different expressions (neutral, happy, sad, angry, disgust, and fearful) and in unconscious/masked perception of negative expressions (fearful and disgust overlapped by neutral). The power spectral analysis from concomitant ECG signals revealed the sympathetic and parasympathetic modulation of cardiac responses. We found higher HbO2 values in the right PFC of females than in males during, and in the left PFC after, following the conscious perception of the happy face. In males, the left PFC increased and the right PFC decreased HbO2 while viewing the happy expression. In both sexes, HHb values were higher during the masked presentation of disgust than fearful expression, and after the masked presentation of fearful expression than during it. Higher sympathetic and lower parasympathetic activity (LF/ HF components) occurred in females when consciously and unconsciously processing negative emotions (p < 0.05 in all cases). These results demonstrate that the human PFC displays a selective activation depending on sex, hemispheric laterality, attention, time for responding to conscious and unconscious emotionally loaded stimuli with simulataneous centrally modulated cardiovascular responses.
Keywords: Cortical hemodynamics; Emotional reactivity; Emotional valence; Human perception; Near infrared spectroscopy; Power spectral analysis.
Copyright © 2020 Elsevier B.V. All rights reserved.