Objective: We evaluated four imaging techniques, i.e. Electroencephalography (EEG)-functional Magnetic Resonance Imaging (MRI) (EEG-fMRI), High-resolution EEG (HR-EEG), Magnetoencephalography (MEG) and 2-[18F]fluoro-2-deoxy-D-glucose positron emission tomography (PET), for the identification of the epileptogenic zone (EZ) in 41 patients with negative MRI, candidate to neurosurgery.
Methods: For each technique, results were compared to the Stereo-EEG. Diagnostic measures were calculated with respect to the post-surgical outcome, either for all the patients (39/41, two patients excluded) and for the subgroup of patients with the EZ involving more than one lobe (20/41).
Results: When considered individually, each functional technique showed accuracy values ranging 54,6%-63,2%, having PET, MEG and HR-EEG higher sensitivity, and EEG-fMRI higher specificity. In patients with multilobar epileptogenic zone, functional techniques achieved the best accuracies (up to 80%) when three techniques, including EEG-fMRI, were considered together.
Conclusions: The study highlights the accuracy of a combination of functional imaging techniques in the identification of EZ in MRI negative focal epilepsy. The best diagnostic yield was obtained if the combination of PET, MEG (or HR-EEG as alternative), EEG-fMRI were considered together.
Significance: The functional imaging techniques may improve the presurgical workup of MRI negative focal epilepsy, if epileptogenic zone involves more than one lobe.
Keywords: EEG-fMRI; Epilepsy surgery; HR-EEG; MEG; PET.
Copyright © 2020 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.