Crystal and Magnetic Structures of Double Hexagonal Close-Packed Iron Deuteride

Sci Rep. 2020 Jun 18;10(1):9934. doi: 10.1038/s41598-020-66669-4.

Abstract

Neutron powder diffraction profiles were collected for iron deuteride (FeDx) while the temperature decreased from 1023 to 300 K for a pressure range of 4-6 gigapascal (GPa). The ε' deuteride with a double hexagonal close-packed (dhcp) structure, which coexisted with other stable or metastable deutrides at each temperature and pressure condition, formed solid solutions with a composition of FeD0.68(1) at 673 K and 6.1 GPa and FeD0.74(1) at 603 K and 4.8 GPa. Upon stepwise cooling to 300 K, the D-content x increased to a stoichiometric value of 1.0 to form monodeuteride FeD1.0. In the dhcp FeD1.0 at 300 K and 4.2 GPa, dissolved D atoms fully occupied the octahedral interstitial sites, slightly displaced from the octahedral centers in the dhcp metal lattice, and the dhcp sequence of close-packed Fe planes contained hcp-stacking faults at 12%. Magnetic moments with 2.11 ± 0.06 μB/Fe-atom aligned ferromagnetically in parallel on the Fe planes.