The genome methylation is globally erased in early fetal germ cells, and it is gradually re-established during gametogenesis. The expression of some imprinted genes is regulated by the methylation status of CpG islands, while the exact time of DNA methylation establishment near maternal imprinted genes during oocyte growth is not well known. Here, growing oocytes were divided into three groups based on follicle diameters including the S-group (60-100 μm), M-group (100-140 μm), and L-group (140-180 μm). The fully grown germinal vesicle (GV)-stage and metaphase II (M2)-stage mature oocytes were also collected. These oocytes were used for single-cell bisulfite sequencing to detect the methylation status of CpG islands near imprinted genes on chromosome 7. The results showed that the CpG islands near Ndn, Magel2, Mkrn3, Peg12, and Igf2 were completely unmethylated, but those of Peg3, Snrpn, and Kcnq1ot1 were hypermethylated in MII-stage oocytes. The methylation of CpG islands near different maternal imprinted genes occurred asynchronously, being completed in later-stage growing oocytes, fully grown GV oocytes, and mature MII-stage oocytes, respectively. These results show that CpG islands near some maternally imprinted genes are not necessarily methylated, and that the establishment of methylation of other maternally imprinted genes is completed at different stages of oocyte growth, providing a novel understanding of the establishment of maternally imprinted genes in oocytes.
Keywords: BSP; imprinted gene; methylation; oocyte.
© 2020 Wiley Periodicals LLC.