The effects of four bile acids on cell Ca2+ were examined in suspensions of isolated rat hepatocytes. Taurolithocholate and lithocholate which inhibit bile secretion increased the cytosolic Ca2+ concentration (ED50, 25 microM), as measured by the fluorescent indicator quin2, and promoted a net loss of Ca2+ from the cells. This effect resulted from rapid mobilization of Ca2+ from an intracellular Ca2+ store. This store corresponds to the one that is permeabilized by the inositol (1,4,5)trisphosphate-dependent hormone vasopressin. However, taurolithocholate and lithocholate, unlike the hormone, did not induce a significant accumulation of inositol trisphosphate fraction in isolated hepatocytes. In addition, these agents did not alter the cell and the mitochondria membrane permeability to ions. When applied to saponin-permeabilized cells, taurolithocholate and lithocholate released Ca2+ (ED50, 20 microM) from an ATP-dependent, nonmitochondrial pool which is sensitive to inositol (1,4,5)trisphosphate. In contrast, the bile acids taurocholate and cholate, which increase bile secretion, had no effect on cell Ca2+ in intact hepatocytes or in saponin-permeabilized hepatocytes. It is suggested that taurolithocholate and lithocholate permeabilize the endoplasmic reticulum to Ca2+ and that the resulting permeabilization of this compartment may be involved in the inhibition of bile secretion in mammalian liver.