Resolution-matched reflection mode photoacoustic microscopy and optical coherence tomography dual modality system

Photoacoustics. 2020 Jun 3:19:100188. doi: 10.1016/j.pacs.2020.100188. eCollection 2020 Sep.

Abstract

Photoacoustic microscopy (PAM) and optical coherence tomography (OCT) are sensitive to optical absorption and scattering characteristics, respectively. As such, the integration of these two modalities in order to combine important complementary information has garnered much attention. Due to the relatively low axial resolution of PAM, PAM and OCT dual modality systems generally have a large resolution gap, especially for reflection mode systems. In this study, based on a wide-band transparent pure-optical ultrasonic detector, we developed a dual modality system (PAM-OCT system) in which PAM has a similar spatial resolution (i.e. several micrometers in both the lateral and axial directions) to OCT. In addition, due to the optical transparency advantage, the integrated system works in reflection mode, which is ideal for in vivo biomedical imaging. We successfully imaged the skin of a mouse hindlimb, which cannot be done by a transmission mode dual modality system. Our work demonstrates this dual modality system has potential in biomedical studies with complementary imaging contrasts.

Keywords: Detection; Multiple imaging; Optical coherence tomography; Photoacoustic imaging.