Aim: This paper was mainly aimed at synthesis of Ce-containing nano-Mg-phosphate ceramic as a multifunctional material.
Materials and methods: Two ceramics based on Mg3(PO4)2 and Ce0.2Mg2.8(PO4)2 formulas (MP and MP-C, respectively) were synthesized. The synthesized powders were characterized by XRD, TEM, Zeta potential, and FTIR. Also, their dissolution behavior was tested in Tris-HCl buffer solution. Moreover, the antimicrobial efficacy was evaluated against gram-positive bacteria (Bacillus sphaericus MTCC 511 &Staphylococcus aureus MTCC 87) and gram-negative bacteria (Enterobacter aerogenes MTCC 111 &Pseudomonas aeruginosa MTCC 1034) using dick diffusion assay and microdilution method. Furthermore, the cell viability test was performed for the ceramics on Vero cells (African green monkey kidney cells), and their antitumor activity was determined by PC3 cell line (prostatic cancer). Also, the cellular uptake was determined by the flow cytometry.
Key findings: The results showed that the substitution of Mg by Ce decreased the particle size from 40 to 90 nm for MP sample to 2-10 nm for MP-C sample and increased the degradation rate. Both samples showed excellent antimicrobial activities. Moreover, MP demonstrated more cell viability than MP-C on Vero cells at high concentrations, whereas, MP-C showed more antitumor activity on PC3 cells than MP sample. Moreover, MP-C showed a higher cell uptake than MP due to its smaller size and more negative charge.
Significance: Mg-phosphate ceramic can be used in this study successfully as a delivery system for cerium ions and showed a high antitumor activity, which makes it highly recommended as safe and effective cancer treatment materials.
Keywords: Antibacterial; Antitumor; Cerium; Dissolution; Flow cytometry; Nano Mg-phosphate.
Copyright © 2020 Elsevier Inc. All rights reserved.