Aim: This study is undertaken to investigate the role and molecular mechanisms of miR-18a-5p in regulating pulmonary arterial hypertension (PAH) pathogenesis.
Methods: Gene expression and protein levels were determined by qRT-PCR and western blot, respectively; Cell counting kti-8 and Transwell migration assays were used to determine the biological functions of miR-18a-5p in pulmonary arterial smooth muscle cells (PASMCs); bioinformatics analysis, luciferase reporter assays were used to elucidate the mechanisms of miR-18a-5p.
Results: MiR-18a-5p was up-regulated in the clinical samples from PAH patients. PASMCs treated with hypoxia exhibited enhanced proliferative ability and upregulated miR-18a-5p expression. Knockdown of miR-18a-5p attenuated hypoxia-induced hyper-proliferation and enhanced migratory potential of PASMCs; while miR-18a-5p overexpression promoted PASMC proliferation and migration. Further mechanistic studies showed that Notch2 was a direct target of miR-18a-5p and was repressed by miR-18a-5p overexpression. The rescue studies indicated that Notch2 overexpression counteracted the enhanced proliferation and migration induced by miR-18a-5p mimics in PASMCs. Similarly, Notch2 overexpression also block the effects caused by hypoxia in PASMCs. Moreover, Notch2 expression was down-regulated in the PAH patients and was negatively correlated with miR-18a-5p expression. In vivo animal studies further revealed the up-regulation of miR-18a-5p and the down-regulation of Notch2 in the PAH rats.
Conclusions: Collectively, this study identified the up-regulated miR-18a-5p in the PAH patients; our data suggest that miR-18a-5p contributes to the enhanced proliferation and migration of PASMCs via repressing Notch2 expression.
Keywords: Migration; Notch2; PASMCs; Proliferation; Pulmonary arterial hypertension; miR-18a-5p.
Copyright © 2020. Published by Elsevier Inc.