Introduction: India has been under four phases of a national lockdown from March 25 to May 31 in response to the COVID-19 pandemic. Unmasking the state-wise variation in the effect of the nationwide lockdown on the progression of the pandemic could inform dynamic policy interventions towards containment and mitigation.
Methods: Using data on confirmed COVID-19 cases across 20 states that accounted for more than 99% of the cumulative case counts in India till May 31, 2020, we illustrate the masking of state-level trends and highlight the variations across states by presenting evaluative evidence on some aspects of the COVID-19 outbreak: case-fatality rates, doubling times of cases, effective reproduction numbers, and the scale of testing.
Results: The estimated effective reproduction number R for India was 3.36 (95% confidence interval (CI): [3.03, 3.71]) on March 24, whereas the average of estimates from May 25 - May 31 stands at 1.27 (95% CI: [1.26, 1.28]). Similarly, the estimated doubling time across India was at 3.56 days on March 24, and the past 7-day average for the same on May 31 is 14.37 days. The average daily number of tests have increased from 1,717 (March 19-25) to 131,772 (May 25-31) with an estimated testing shortfall of 4.58 million tests nationally by May 31. However, various states exhibit substantial departures from these national patterns.
Conclusions: Patterns of change over lockdown periods indicate the lockdown has been effective in slowing the spread of the virus nationally. The COVID-19 outbreak in India displays large state-level variations and identifying these variations can help in both understanding the dynamics of the pandemic and formulating effective public health interventions. Our framework offers a holistic assessment of the pandemic across Indian states and union territories along with a set of interactive visualization tools that are daily updated at covind19.org.