SOD3 induces a HIF-2α-dependent program in endothelial cells that provides a selective signal for tumor infiltration by T cells

J Immunother Cancer. 2020 Jun;8(1):e000432. doi: 10.1136/jitc-2019-000432.

Abstract

Background: Tumor-infiltrating lymphocytes (TILs), mainly CD8+ cytotoxic T lymphocytes (CTL), are linked to immune-mediated control of human cancers and response to immunotherapy. Tumors have nonetheless developed specific mechanisms that selectively restrict T cell entry into the tumor microenvironment. The extracellular superoxide dismutase (SOD3) is an anti-oxidant enzyme usually downregulated in tumors. We hypothesize that upregulation of SOD3 in the tumor microenvironment might be a mechanism to boost T cell infiltration by normalizing the tumor-associated endothelium.

Results: Here we show that SOD3 overexpression in endothelial cells increased in vitro transmigration of naïve and activated CD4+ and CD8+ T cells, but not of myeloid cells. Perivascular expression of SOD3 also specifically increased CD4+ and CD8+ effector T cell infiltration into tumors and improved the effectiveness of adoptively transferred tumor-specific CD8+ T cells. SOD3-induced enhanced transmigration in vitro and tumor infiltration in vivo were not associated to upregulation of T cell chemokines such as CXCL9 or CXCL10, nor to changes in the levels of endothelial adhesion receptors such as intercellular adhesion molecule-1 (ICAM-1) or vascular cell adhesion molecule-1 (VCAM-1). Instead, SOD3 enhanced T cell infiltration via HIF-2α-dependent induction of specific WNT ligands in endothelial cells; this led to WNT signaling pathway activation in the endothelium, FOXM1 stabilization, and transcriptional induction of laminin-α4 (LAMA4), an endothelial basement membrane component permissive for T cell infiltration. In patients with stage II colorectal cancer, SOD3 was associated with increased CD8+ TIL density and disease-free survival. SOD3 expression was also linked to a T cell-inflamed gene signature using the COAD cohort from The Cancer Genome Atlas program.

Conclusion: Our findings suggest that SOD3-induced upregulation of LAMA4 in endothelial cells boosts selective tumor infiltration by T lymphocytes, thus transforming immunologically "cold" into "hot" tumors. High SOD3 levels are associated with human colon cancer infiltration by CD8+ T cells, with potential consequences for the clinical outcome of these patients. Our results also uncover a cell type-specific, distinct activity of the WNT pathway for the regulation of T cell infiltration into tumors.

Keywords: immunology; tumors.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Basic Helix-Loop-Helix Transcription Factors / genetics
  • Basic Helix-Loop-Helix Transcription Factors / metabolism*
  • CD8-Positive T-Lymphocytes / immunology*
  • Endothelial Cells / immunology*
  • Female
  • Humans
  • Lymphocyte Activation
  • Lymphocytes, Tumor-Infiltrating / immunology*
  • Mice
  • Mice, Inbred C57BL
  • Mice, Knockout
  • Neoplasms / immunology*
  • Neoplasms / metabolism
  • Neoplasms / pathology
  • Signal Transduction
  • Superoxide Dismutase / genetics
  • Superoxide Dismutase / metabolism*
  • Superoxide Dismutase / physiology*
  • Tumor Cells, Cultured
  • Tumor Microenvironment

Substances

  • Basic Helix-Loop-Helix Transcription Factors
  • endothelial PAS domain-containing protein 1
  • SOD3 protein, human
  • Sod3 protein, mouse
  • Superoxide Dismutase