Ultraviolet B (UVB) can induce oxidative damage to outermost layers of skin causing suntans, sunburns, and, in severe cases, blisters leading to photoaging. Low molecular weight (MW) fucoidan is renowned for possessing enhanced antioxidant activities. The present study discloses the use of step gradient ethanol precipitation in refining fucoidan fractions (SSQC1-SSQC4) from Sargassum siliquastrum and evaluation of their UVB-protective effects in human HaCaT keratinocytes. Among the fractions, SSQC4 indicated the best bioactive effects. 1H NMR, FTIR, monosaccharide composition by HPAEC-PAD analysis, MW estimation by agarose gel electrophoresis were used to characterize the fractions. SSQC4 was comprising of fucoidan, with an estimated MW distribution of 8-25 kDa. Exposure of UVB increased intracellular ROS, DNA damage, loss of mitochondrial membrane potential, apoptotic body formation causing cell death through the mitochondria-mediated apoptosis pathway. SSQC4 treatment could dose-dependently attenuate the ROS levels and suppress mitochondria-mediated apoptosis in UVB exposed keratinocytes. SSQC4 treatment enhanced cellular antioxidant defense by increasing Nrf2 mediated HO-1 generation, which was identified as the cause of observed bioactivities. The safety and stability of SSQC4 could be further evaluated to promote its use as a bioactive natural ingredient in UV-protective cosmetics.
Keywords: Gradient alcohol precipitation; Sargassum siliquastrum; Ultraviolet B.
Copyright © 2020 Elsevier B.V. All rights reserved.