This study has taken advantage of the availability of the assembled genomic sequence of flies, mosquitos, ants and bees to explore the presence of ultraconserved sequence elements in these phylogenetic groups. We compared non-coding sequences found within and flanking Drosophila developmental genes to homologous sequences in Ceratitis capitata and Musca domestica Many of the conserved sequence blocks (CSBs) that constitute Drosophila cis-regulatory DNA, recognized by EvoPrinter alignment protocols, are also conserved in Ceratitis and Musca Also conserved is the position but not necessarily the orientation of many of these ultraconserved CSBs (uCSBs) with respect to flanking genes. Using the mosquito EvoPrint algorithm, we have also identified uCSBs shared among distantly related mosquito species. Side by side comparison of bee and ant EvoPrints of selected developmental genes identify uCSBs shared between these two Hymenoptera, as well as less conserved CSBs in either one or the other taxon but not in both. Analysis of uCSBs in these dipterans and Hymenoptera will lead to a greater understanding of their evolutionary origin and function of their conserved non-coding sequences and aid in discovery of core elements of enhancers.This study applies the phylogenetic footprinting program EvoPrinter to detection of ultraconserved non-coding sequence elements in Diptera, including flies and mosquitos, and Hymenoptera, including ants and bees. EvoPrinter outputs an interspecies comparison as a single sequence in terms of the input reference sequence. Ultraconserved sequences flanking known developmental genes were detected in Ceratitis and Musca when compared with Drosophila species, in Aedes and Culex when compared with Anopheles, and between ants and bees. Our methods are useful in detecting and understanding the core evolutionarily hardened sequences required for gene regulation.
Keywords: Enhancers; EvoPrinter; Ultraconserved non-coding sequences.
Copyright © 2020 Brody et al.