In eukaryotes, transcription factors (TFs) orchestrate gene expression by binding to TF-binding sites (TFBSs) and localizing transcriptional co-regulators and RNA polymerase II to cis-regulatory elements. However, we lack a basic understanding of the relationship between TFBS composition and their quantitative transcriptional responses. Here, we measured expression driven by 17,406 synthetic cis-regulatory elements with varied compositions of a model TFBS, the c-AMP response element (CRE) by using massively parallel reporter assays (MPRAs). We find CRE number, affinity, and promoter proximity largely determines expression. In addition, we observe expression modulation based on the spacing between CREs and CRE distance to the promoter, where expression follows a helical periodicity. Finally, we compare library expression between an episomal MPRA and a genomically integrated MPRA, where a single cis-regulatory element is assayed per cell at a defined locus. These assays largely recapitulate each other, although weaker, non-canonical CREs exhibit greater activity in a genomic context.
Keywords: functional genomics; gene regulation; massively parallel reporter assays; synthetic biology; systems biology; transcription factor.
Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved.