Detection methods for Demodex musculi were historically unreliable, and testing was rarely performed because its prevalence in laboratory mice was underestimated. Although infestations are unapparent in most mouse strains, D. musculi burdens are higher and clinical signs detected in various immunodeficient strains. The parasite's influence on the immune system of immunocompetent mice is unknown. We characterized mite burden (immunocompetent and immunodeficient strains) and immunologic changes (immunocompetent strains only) in naïve Swiss Webster (SW; outbred), C57BL/6NCrl (B6; Th1 responder), BALB/cAnNCrl (BALB/c; Th2 responder) and NOD. Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG; immunodeficient) mice after exposure to Demodex-infested NSG mice. Infested and uninfested age-matched mice of each strain (n = 5) were euthanized 14, 28, 56, and 112 d after exposure. Mite burden was determined through PCR analysis and skin histopathology; B-cell and CD4+ and CD8+ T-cell counts and activation states (CD25 and CD69) were evaluated by using flow cytometry; CBC counts were performed; and serum IgE levels were measured by ELISA. Mite burden and PCR copy number correlated in NSG mice, which had the highest mite burden, but not in immunocompetent strains. Infested immunocompetent animals developed diffuse alopecia by day 112, and both BALB/c and C57BL/6 mice had significantly increased IgE levels. These findings aligned with the skewed Th1 or Th2 immunophenotype of each strain. BALB/c mice mounted the most effective host response, resulting in the lowest mite burden of all immunocompetent strains at 112 d after infestation without treatment. Clinically significant hematologic abnormalities were absent and immunophenotype was unaltered in immunocompetent animals. Topical treat- ment with imidacloprid-moxidectin (weekly for 8 wk) was effective at eradicating mites by early as 7 d after treatment. IgE levels decreased substantially in infested BALB/c mice after treatment. These findings demonstrate a need for D. musculi surveillance in mouse colonies, because the infestation may influence the use of infested mice in select studies.