High fructose intake has been associated with perturbed lipid, uric acid and lactate homeostasis. However, consumption of fructose-sweetened beverages is not usually regulated during pregnancy. The effect of short-chain fatty acid (acetate) on the metabolic effects of high fructose intake during pregnancy is not known. We hypothesized that acetate prevents gestational fructose-induced hepatic triglyceride (TG) accumulation by suppressing uric acid and lactate production. Pregnant Wistar rats were randomly separated into three groups (n = 6/group) receiving drinking water (CON), 10 % (w/v) fructose drink (FRU) and 10 % (w/v) fructose with 200 mg/kg (w/w; p.o.) sodium acetate (FRU + ACE) daily for nineteen days. Fructose intake resulted in increased body weight gain, liver weight, fluid intake, visceral fat, insulin resistance, fasting blood glucose, insulin, plasma and hepatic TG, total cholesterol, free fatty acid, lipid peroxidation, adenosine deaminase, xanthine oxidase, uric acid, lactate, lactate dehydrogenase, and liver injury marker enzymes. However, gestational high fructose intake led to depressed plasma and hepatic glucose-6-phosphate dehydrogenase (G6PD)-dependent antioxidant barrier, adenosine and food intake. All these effects except water intake and food intake were abated by sodium acetate. These results demonstrate that maternal fructose-enriched drink would cause hepatic TG accumulation that is associated with perturbed glucose, uric acid, lactate homeostasis, and G6PD-dependent antioxidant barrier. These results also demonstrate that acetate protects the liver against gestational fructose-induced TG accumulation by inhibiting uric acid and lactate production. Thus, acetate may be useful in the treatment of hyperuricemia- and hyperlactatemia-related disorders.
Keywords: Acetate; Gestational fructose; Hepatic triglyceride; Lactate; Uric acid.
Copyright © 2020 Elsevier B.V. All rights reserved.