Feline infectious peritonitis (FIP) is a coronavirus-induced disease of cats, in which the immune system is known to play a crucial, but complex, role in the pathogenesis. This role is still incompletely understood, with involvement of both host and viral factors. To evaluate differential gene expression and pathway involvement in feline coronavirus (FCoV) infection and FIP, we applied next-generation RNA-sequencing of the mesenteric lymph nodes from cats with naturally-acquired FIP, as well as those with systemic FCoV infection without FIP, and those with neither. Viral infection was associated with upregulation of viral defenses regardless of the disease state, but to a greater degree in FIP. FIP was associated with higher pro-inflammatory pathway enrichment, whilst non-FIP FCoV-positive cats showed lower enrichment of humoral immunity pathways, below that of uninfected cats in the case of immunoglobulin production pathways. This host response is presumed to be protective. In FIP, downregulation of T cell-related processes was observed, which did not occur in non-FIP FCoV-positive cats. These results emphasize the importance of the host's immune balance in determining the outcome of the FCoV infection.
Keywords: FCoV; FIP; RNA-seq; cell mediated immunity; humoral immunity; next-generation sequencing.