Synapse and Active Zone Assembly in the Absence of Presynaptic Ca2+ Channels and Ca2+ Entry

Neuron. 2020 Aug 19;107(4):667-683.e9. doi: 10.1016/j.neuron.2020.05.032. Epub 2020 Jun 16.

Abstract

Presynaptic CaV2 channels are essential for Ca2+-triggered exocytosis. In addition, there are two competing models for their roles in synapse structure. First, Ca2+ channels or Ca2+ entry may control synapse assembly. Second, active zone proteins may scaffold CaV2s to presynaptic release sites, and synapse structure is CaV2 independent. Here, we ablated all three CaV2s using conditional knockout in cultured hippocampal neurons or at the calyx of Held, which abolished evoked exocytosis. Compellingly, synapse and active zone structure, vesicle docking, and transsynaptic nano-organization were unimpaired. Similarly, long-term blockade of action potentials and Ca2+ entry did not disrupt active zone assembly. Although CaV2 knockout impaired the localization of β subunits, α2δ-1 localized normally. Rescue with CaV2 restored exocytosis, and CaV2 active zone targeting depended on the intracellular C-terminus. We conclude that synapse assembly is independent of CaV2s or Ca2+ entry through them. Instead, active zone proteins recruit and anchor CaV2s via CaV2 C-termini.

Keywords: CaV2; active zone; calcium channels; neurotransmitter; neurotransmitter release; presynaptic calcium; secretion; synapse assembly; synaptic vesicle exocytosis.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Calcium / metabolism
  • Calcium Channels / genetics
  • Calcium Channels / metabolism*
  • Exocytosis / physiology
  • Mice, Knockout
  • Neurons / metabolism
  • Presynaptic Terminals / metabolism*
  • Synapses / metabolism*
  • Synaptic Transmission / physiology*
  • Synaptic Vesicles / metabolism

Substances

  • Calcium Channels
  • Calcium