The MULTICOM Protein Structure Prediction Server Empowered by Deep Learning and Contact Distance Prediction

Methods Mol Biol. 2020:2165:13-26. doi: 10.1007/978-1-0716-0708-4_2.

Abstract

Prediction of the three-dimensional (3D) structure of a protein from its sequence is important for studying its biological function. With the advancement in deep learning contact distance prediction and residue-residue coevolutionary analysis, significant progress has been made in both template-based and template-free protein structure prediction in the last several years. Here, we provide a practical guide for our latest MULTICOM protein structure prediction system built on top of the latest advances, which was rigorously tested in the 2018 CASP13 experiment. Its specific functionalities include: (1) prediction of 1D structural features (secondary structure, solvent accessibility, disordered regions) and 2D interresidue contacts; (2) domain boundary prediction; (3) template-based (or homology) 3D structure modeling; (4) contact distance-driven ab initio 3D structure modeling; and (5) large-scale protein quality assessment enhanced by deep learning and predicted contacts. The MULTICOM web server ( http://sysbio.rnet.missouri.edu/multicom_cluster/ ) presents all the 1D, 2D, and 3D prediction results and quality assessment to users via user-friendly web interfaces and e-mails. The source code of the MULTICOM package is also available at https://github.com/multicom-toolbox/multicom .

Keywords: Deep learning; Fold recognition; Protein contact prediction; Protein distance prediction; Protein domain; Protein quality assessment; Protein structure prediction.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Deep Learning
  • Humans
  • Molecular Dynamics Simulation
  • Protein Conformation*
  • Sequence Analysis, Protein / methods*
  • Software*