Effects of different variables on photodestruction of perfluorooctanoic acid in self-assembled micelle system

Sci Total Environ. 2020 Nov 10:742:140438. doi: 10.1016/j.scitotenv.2020.140438. Epub 2020 Jun 23.

Abstract

Perfluoroalkyl substance (PFAS) is a class of anionic surfactants with superior stability in the environment. Due to the harmful health effect, PFASs have been listed as the priority controlled pollutants. Our recent study had developed a cationic surfactant induced ternary self-assembled micelle system to effectively degrade PFASs. In this study, using perfluorooctanoic acid (PFOA) as the model pollutant, we further investigated the effects of different variables on the degradation processes. According to the results of laser flash photolysis and dynamic light scattering, the degradation of PFOA was positively correlated with the chain length of the surfactants. While for double-chain surfactant, the steric effect might hinder the reaction. Our results also indicated that in the presence of high concentration of NaCl, the electrostatic attraction between Cl- and the positively charged micelle made the micelle structure loose and thus slightly reduced the degradation efficiency. Similarly, the presence of NOM could also affect the degradation process via regulating the micelle structure. Furthermore, the optimal degradation efficiency for PFOA was obtained at neutral pH by the compromise of hydrated electron yield and self-assembled micelle structure. This composite showed good adaptability under ambient conditions and would have great potential for treatment of industrial PFAS containing wastewater, e.g., in the ternary micelle system, 18.95 mg L-1 PFOA could be completely degraded within 8 h without any pretreatments.

Keywords: Ion strength; Natural organic matter; PFOA-containing industrial wastewater; Surfactant; pH.