Despite the extensive research on Notch signaling involvement in inflammation, its specific role in macrophage response in autoimmune disease and defense mechanisms against bacterial infection, such as Mycobacterium avium paratuberculosis (MAP), remains unknown. In this study, we investigated the molecular role of Notch-1 signaling in the macrophage response during MAP infection. In particular, we measured the in vitro effect of MAP on Notch-1 signaling and downstream influence on interleukin (IL)-6 and myeloid cell leukemia sequence-1 (MCL-1) and consequent cellular apoptosis, MAP viability, and macrophage polarization. Overall, the data show significant upregulation in Notch-1, IL-6, and MCL-1 in MAP-infected macrophages, parallel with a decrease in apoptosis and elevated pro-inflammatory response in these infected cells. On the contrary, blocking Notch signaling with γ-secretase inhibitor (DAPT) decreased MAP survival and burden, increased apoptosis, and diminished the pro-inflammatory response. In particular, the treatment of infected macrophages with DAPT shifted macrophage polarization toward M2 anti-inflammatory phenotypic response. The outcome of this study clearly demonstrates the critical role of Notch signaling in macrophage response during infection. We conclude that MAP infection in macrophages activates Notch-1 signaling and downstream influence on IL-6 which hijack MCL-1 dependent inhibition of apoptosis leading to its chronic persistence, and further inflammation. This study supports Notch-1 signaling as a therapeutic target to combat infection in autoimmune diseases such as Crohn's disease and Rheumatoid Arthritis.
Keywords: Crohn’s disease; IL-6; M1; M2; apoptosis; macrophages; mcl-1; notch; paratuberculosis; polarization; rheumatoid arthritis.