The combination of different modalities greatly enhances the anticancer efficacy of each treatment by combining their merits, showing promising potential in clinical translation. Herein, we fabricated cancer cell membrane-coated gold nanorods (GNR@Mem) possessing excellent photothermal transfer ability in the second near-infrared window and radiosensitizing ability under X-ray irradiation. The cancer cell membrane coating endowed the nanomedicine with stability in the physiological environment and selective homotypic targeting to specific cancer cells in vitro. Under NIR light and X-ray irradiation, the gold nanorods induced a temperature increase, reactive oxygen generation, and subsequent damage to the DNA helix structure, leading to enhanced cell apoptosis. Benefitting from its relative long circulation time in the blood and homotypic targeting effect, the tumor accumulation of GNR@Mem significantly increased. The in vivo results demonstrate that the combination of photothermal therapy and radiotherapy effectively suppresses tumor growth without noticeable systemic toxicity.