Background: Leadless pacemakers preclude the need for permanent leads to pace endocardium. However, it is yet to be determined whether a leadless pacemaker of a similar design to those manufactured for the right ventricle (RV) fits within the left ventricle (LV), without interfering with intracardiac structures.
Methods: Cardiac computed tomography scans were obtained from 30 patients indicated for cardiac resynchronisation therapy upgrade. The mitral valve annulus, chordae tendineae, papillary muscles and LV endocardial wall were marked in the end-diastolic frame. Intracardiac structures motions were tracked through the cardiac cycle. Two pacemaker designs similar to commercially manufactured leadless systems (Abbott's Nanostim LCP and Medtronic's Micra TPS) as well as theoretical designs with calculated optimal dimensions were evaluated. Pacemakers were virtually placed across the LV endocardial surface and collisions between them and intracardiac structures were detected throughout the cycle.
Results: Probability maps of LV intracardiac structures collisions on a 16-segment AHA model indicated possible placement for the Nanostim LCP, Micra TPS, and theoretical designs. Thresholding these maps at a 20% chance of collision revealed only about 36% of the endocardial surface remained collision-free with the deployment of Micra TPS design. The same threshold left no collision-free surface in the case of the Nanostim LCP. To reach at least half of the LV endocardium, the volume of Micra TPS, which is the smaller design, needed to be decreased by 41%.
Conclusion: Due to the presence of intracardiac structures, placement of leadless pacemakers with dimensions similar to commercially manufactured RV systems would be limited to apical regions.
Keywords: cardiac resynchronisation therapy (CRT); collision detection; computed tomography; image registration; intracardiac structures; leadless pacemaker; motion tracking.
© 2020 The Authors. Journal of Cardiovascular Electrophysiology published by Wiley Periodicals LLC.