Drug resistant infections are an increasing problem world-wide, responsible for an estimated 700,000 annual mortalities. The use of antibiotics to treat such infections has resulted in the development of resistant bacterial pathogens such as methicillin-resistant Staphylococcus aureus (MRSA). One potential alternative strategy for treating drug resistant bacterial infections is to inhibit the production of toxins, thereby making the bacteria less harmful to the host, a so called "anti-virulence" approach. In MRSA, the agr quorum sensing system is one of the major regulators of toxin production, and quorum sensing inhibitors that target this system are a promising anti-virulence strategy. With this study, we developed a method that enables the activity of quorum sensing inhibitors to be measured using ultra-performance liquid chromatography coupled to mass spectrometry (UPLC-MS). This method is an improvement over existing methods because it can be employed to distinguish antimicrobial activity from quorum sensing inhibition activity based on the UPLC-MS data. This is possible by simultaneously tracking production of metabolites regulated by the agr quorum sensing system (AIP-I and formylated δ-toxin) and a metabolite that appears not to be agr regulated under the conditions of this study (aureusimine B). The newly developed method provides more nuanced indication of how metabolite production changes over time and in response to quorum sensing or growth inhibition than is possible with commonly employed spectroscopic methods.
Keywords: Aureusimine B; Mass spectrometry; Metabolomics; Quorum sensing; Selectivity ratio; Virulence.
Copyright © 2020 Elsevier B.V. All rights reserved.