Ocotillol-type sapogenins (OTS) are major ginsenoside metabolites in human hepatic tissue. In order to better utilize OTS and derivatives thereof as anti-inflammatory compounds, present study produced multiple novel 3-amino acid OTS derivatives and evaluated their anti-inflammatory activity in vitro. The nitric oxide (NO) inhibitory activity of these compounds was used for OTS structure-activity relationship (SAR) evaluations, revealing that both R/S stereochemistry at C-24 and the amino acid type at C-3 influence such NO inhibitory activity. This activity was highest for an N-Boc-protected neutral aliphatic amino acid derivative of 24R-OTS (5a), which performed better than even hydrocortisone sodium succinate in vitro. Compound 5a was also able to markedly suppress the LPS-induced upregulation of TNF-α, IL-6, iNOS, and COX-2 via the NF-κB and MAPK pathways. This suggests that OTS derivatives may be valuable anti-inflammatory compounds worthy of further preclinical evaluation.
Keywords: Anti-inflammatory activity; Ginsenosides; NF-κB and MAPK pathways; Ocotillol-type sapogenins; Structure-activity relationship.
Copyright © 2020 Elsevier Masson SAS. All rights reserved.