Aims: Intrahepatic cholangiocarcinoma (ICC) is a highly malignant tumour with increasing incidence and high mortality. Liver kinase B1 (LKB1) regulates cellular energy metabolism and cell division and affects immune microenvironment. This study aimed to uncover the underlying function and mechanism of LKB1 in ICC.
Main methods: To determine the correlation between LKB1 levels and clinicopathological features, the expression profile of LKB1 in ICC tissue specimens was examined by qRT-PCR and western blotting. In vitro experiments were conducted to examine the anticancer effect of LKB1 in ICC. Changes in the expression of epithelial-mesenchymal transition (EMT)-associated markers and immune checkpoints were analysed by qRT-PCR, western blotting, immunofluorescence and flow cytometry. The influence of LKB1 on the transcriptional activity of PD-L1 was determined by dual-luciferase reporter assays and IFNγ induction.
Key findings: LKB1 was expressed at low levels in ICC and tightly associated with poor prognosis. LKB1 knockdown promoted the proliferation, migration, matrix adhesion and EMT of ICC cells. Notably, LKB1 silencing upregulated the surface expression of PD-L1 in ICC cells. Suppressed and mutated LKB1 enhanced the transcriptional activity of PD-L1 in ICC cells, leading to high expression of the immune checkpoint PD-L1. Furthermore, inhibiting LKB1 suppressed ICC cell apoptosis induced by IFNγ.
Significance: By suppressing malignant transformation and the immune checkpoint PD-L1 of cancer cells, LKB1 plays an important role in inhibiting ICC and is a potential target for clinical diagnosis and treatment. This study may provide new strategies for improving the efficiency of cancer immunotherapy.
Keywords: EMT; Intrahepatic cholangiocarcinoma; LKB1; PD-L1; Transcriptional activity.
Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved.