Dexmedetomidine inhibits the release of inflammatory cytokines and exerts a systemic anti-inflammatory effect and has potential protective effects on vital organs such as lung, heart, and kidneys. The aim of this study was to investigate the effect of dexmedetomidine on LPS-treated HK-2 cells in vitro and explore the potential mechanisms. The HK-2 cells were pretreated with dexmedetomidine before LPS induction. CCK-8, flow cytometry, ELISA, or qRT-PCR was performed to detect cell proliferation, apoptosis, and proinflammatory cytokine expression. The levels of MALAT1 in HK-2 cells under different stimulation were measured by qRT-PCR. Then, m6A RNA immunoprecipitation was performed to detect methylated MALAT1 in HK-2 cells. The results showed dexmedetomidine suppressed cell viability, induced cell apoptosis, and reduced inflammation cytokine production of LPS-treated HK-2 cells. Besides, dexmedetomidine reduced the expression of MALAT1 in HK-2 cells under LPS stimulation. In addition, ALKBH5 could up-regulate MALAT1 expression by demethylation. Furthermore, dexmedetomidine inhibited the expression of ALKBH5 in LPS-treated HK-2 cells. ALKBH5 knockdown inhibited cell viability, induced cell apoptosis, and decreased inflammation cytokine production of LPS-treated HK-2 cells. In short, dexmedetomidine suppressed the biological behavior of HK-2 cells treated with LPS by inhibiting the expression of ALKBH5 in vitro, which may provide potential targets for the prevention and treatment of sepsis-induced kidney injury.
Keywords: ALKBH5; HK-2 cells; MALAT1; dexmedetomidine.