Phosphorus is a finite resource essential for global food production. However, excessive loss to river systems from diffuse sources (typically agricultural) and point sources (e.g. waste water treatment works and industrial effluent) can lead to negative environmental impacts, including changes to diatom and invertebrate community structure. Current environmental quality standards for phosphorus in the UK have been based on reactive phosphorus, which is poorly defined and comprises an unknown proportion of soluble reactive phosphorus and chemically extractable particulate phosphorus. This research assesses the influencing factors that may control soluble reactive phosphorus concentrations in rivers, including dissolved iron, as well as partitioning processes associated with the presence of total suspended solids, and questions the reliability of the assumptions used when setting environmental quality standards. The extensive phosphorus speciation monitoring carried out across a wide geographic area of England and Wales shows that not all phosphorus as measured by the molybdenum blue method is either soluble or necessarily bioavailable, particularly at concentrations in the range in which the Environmental Quality Standard for 'Good' status (typically less than 100 μg P L-1) has been set. Phosphorus speciation can change due to physico-chemical processes which vary spatially and/or temporally, including precipitation with iron and partitioning with suspended solids.