Purpose of review: Machado-Joseph disease (MJD), also known as spinocerebellar ataxia type 3 (SCA3), is a fatal, dominantly inherited, neurodegenerative disease caused by expansion of a CAG repeat in the coding region of the ATXN3 gene. No disease-modifying treatment is yet available for MJD/SCA3. This review discusses recently developed therapeutic strategies that hold promise as future effective treatments for this incurable disease.
Recent findings: As a result of the exploration of multiple therapeutic approaches over the last decade, the MJD/SCA3 field is finally starting to see options for disease-modifying treatments for this disease come into view on the horizon. Recently developed strategies include DNA-targeted and RNA-targeted therapies, and approaches targeting protein quality control pathways and cellular homeostasis.
Summary: While still in preclinical testing stages, antisense oligonucleotides, short hairpin RNAs and citalopram all show promise to reaching testing in clinical trials for MJD/SCA3. Two pharmacological approaches in early stages of development, the slipped-CAG DNA binding compound naphthyridine-azaquinolone and autophagosome-tethering compounds, also show potential therapeutic capacity for MJD/SCA3. Overall, a handful of therapeutic options are currently showing potential as future successful treatments for fatal MJD/SCA3.