Background: Biofilm formation in Staphylococcus aureus is a major virulence factor. Both methicillin-sensitive Staphylococcus aureus (MSSA) and methicillin-resistant Staphylococcus aureus (MRSA) are common causes of community- and hospital-acquired infections and are associated with biofilm formation. The status of biofilm-forming genes has not been explored in Jordanian nasal carriers of S. aureus. This study investigates antibiotic resistance patterns and the prevalence of biofilm-forming genes between MSSA and MRSA in two distinct populations in Jordan.
Methods: A total of 35 MSSA and 22 MRSA isolates were recovered from hospitalized patients and medical students at Prince Hamzah Hospital, Jordan. Antibiotic susceptibility was tested using disk diffusion method and Vitek 2 system. The phenotypic biofilm formation was tested using Congo red agar and microtiter plate assays. The prevalence of the biofilm-forming genes was determined using multiplex PCR.
Results: Among 57 S. aureus isolates, 22 (38.6%) isolates were MRSA and were highly resistant against benzylpenicillin, oxacillin, and imipenem. The frequencies of the icaADBC were 77.1%, 97.1%, 94.3%, and 97.1% respectively in MSSA compared to 86.4%, 100%, 100%, and 100% in MRSA isolates. On the other hand, the frequency of the fnbA, fnbB, clfA, fib, clfB, ebps, eno, and cna genes was 81.8%, 90.9%, 95.5%, 90.9%, 86.4%, 100%, 100%, and 40.9%, respectively in the MRSA isolates.
Conclusion: In both groups, MRSA isolates, in comparison to MSSA, were significantly more resistant to cefoxitin, oxacillin, imipenem, tetracycline, clindamycin, and trimethoprim-sulfamethoxazole. Unexpectedly, biofilm formation and gene prevalence between MRSA and MSSA isolates showed no significant difference, suggesting other potential virulence mechanisms.
Keywords: Biofilms; Methicillin-resistant Staphylococcus aureus; Methicillin-sensitive Staphylococcus aureus.