Sea urchin chronicles. The effect of oxygen super-saturation and marine polluted sediments from Bagnoli-Coroglio Bay on different life stages of the sea urchin Paracentrotus lividus

Mar Environ Res. 2020 Jul:159:104967. doi: 10.1016/j.marenvres.2020.104967. Epub 2020 Mar 27.

Abstract

In marinas and harbours, the accumulation of pollutants in sediments, combined with poor exchange of water with the open sea, poses a major environmental threat. The presence of photosynthetic organisms and the related oxygen production, however, may alleviate the negative effects of environmental contamination on heterotrophic organisms, enhancing their physiological defences. Furthermore, possible transgenerational buffer effects may increase the ability of natural populations to face environmental stress. Here we tested the occurrence of transgenerational effects on larvae of the sea urchin Paracentrotus lividus, whose parents were exposed, during the gametogenesis, to contaminated sediments subject to two temporal patterns of water re-suspension events and normal- (90%) vs. super-saturated (200%) levels of O2. The study site was Bagnoli-Coroglio (Gulf of Naples, southern Tyrrhenian Sea), a historically polluted brownfield and Site of National Interest for which environmental restoration options are currently under exploration. Larvae from different adult populations were significantly, although not linearly, affected by the interaction of all factors to which parents were exposed, at both 24h and 48h post fertilization. Specifically, the exposure of larvae to elutriates from contaminated sediments determined a developmental delay, a reduction in size and an increased percentage of abnormalities in all larval populations independently of their parental exposure. On the contrary, larvae from parents exposed to contaminated sediments, when reared in clean filtered sea water, succeeded in developing until the echinopluteus stage after 48h, with size and abundance comparable to those of larvae from control parents. Pre-exposure of parents to contaminated sediments did not successfully buffer the negative effects of elutriates on their offspring, and no positive effects of 'super-saturated' levels of O2 in response to contaminants were observed, suggesting that the Bagnoli-Coroglio area is currently not suitable for the re-stocking or re-introduction of this species.

Keywords: Anthropogenic impact; Development; Marine pollution; Oxygenation; Sediment; Water turbulence.

MeSH terms

  • Animals
  • Bays
  • Geologic Sediments
  • Oxygen
  • Paracentrotus*
  • Water Pollutants, Chemical*

Substances

  • Water Pollutants, Chemical
  • Oxygen