In Situ Raman Characterization of SOFC Materials in Operational Conditions: A Doped Ceria Study

Membranes (Basel). 2020 Jul 10;10(7):148. doi: 10.3390/membranes10070148.

Abstract

The particular operational conditions of electrochemical cells make the simultaneous characterization of both structural and transport properties challenging. The rapidity and flexibility of the acquisition of Raman spectra places this technique as a good candidate to measure operating properties and changes. Raman spectroscopy has been applied to well-known lanthanide ceria materials and the structural dependence on the dopant has been extracted. The evolution of Pr-doped ceria with temperature has been recorded by means of a commercial cell showing a clear increment in oxygen vacancies concentration. To elucidate the changes undergone by the electrolyte or membrane material in cell operation, the detailed construction of a homemade Raman cell is reported. The cell can be electrified, sealed and different gases can be fed into the cell chambers, so that the material behavior in the reaction surface and species evolved can be tracked. The results show that the Raman technique is a feasible and rather simple experimental option for operating characterization of solid-state electrochemical cell materials, although the treatment of the extracted data is not straightforward.

Keywords: Raman spectroscopy; doped ceria; in-situ Raman cell.