Activation of the Nrf2 response by oleanolic acid oxime morpholide (3-hydroxyiminoolean-12-en-28-oic acid morpholide) is associated with its ability to induce apoptosis and inhibit proliferation in HepG2 hepatoma cells

Eur J Pharmacol. 2020 Sep 15:883:173307. doi: 10.1016/j.ejphar.2020.173307. Epub 2020 Jul 12.

Abstract

Our previous study demonstrated that new oleanolic acid oxime (OAO) derivatives and their conjugates with aspirin (ASP) inhibit NF-κB activation. Evidence exists that the downregulation of NF-κB negatively interferes with the Nrf2 signaling pathway. This study aimed to evaluate the effect of these compounds on Nrf2 activation and its cellular consequences in human hepatoma HepG2 cells and immortalized normal hepatocytes THLE-2. The results showed the enhanced activation and expression of Nrf2 as a result of treatment with OAO derivatives themselves and to less extent by their ASP conjugates, mainly in HepG2 cells. The association between cytotoxicity evaluated in our previous study and Nrf2 activation was observed. In this regard, compounds (18) with morpholide substituent at the C-17 position of OAO molecule and (12) with methyl ester substituent at the same position of OAO molecule to the most extent activated Nrf2 and subsequently cell cycle arrest at G2/M, leading to increased apoptosis and the number of resting HepG2 cells. The derivative of OAO (18) substituted with ASP (19) also affected Nrf2 activation and expression, but this effect was less pronounced in comparison with non-conjugated OAO. However, conjugation enhanced Nrf2 activation in normal THLE-2 cells. These results confirmed our earlier suggestion that OAO derivatives conjugated with ASP have the potential for application in the liver cancer chemoprevention. OAO themselves, particularly OAO substituted with morpholide, may be considered therapeutic agents, which may support conventional treatment strategy. Further studies are required to confirm this suggestion.

Keywords: Aspirin oleanolate conjugates; HepG2 and THLE-2 cells; Nrf2; Oleanolic acid oximes derivatives.

Publication types

  • Comparative Study

MeSH terms

  • Antineoplastic Agents / pharmacology*
  • Apoptosis / drug effects*
  • Carcinoma, Hepatocellular / drug therapy*
  • Carcinoma, Hepatocellular / genetics
  • Carcinoma, Hepatocellular / metabolism
  • Carcinoma, Hepatocellular / pathology
  • Cell Proliferation / drug effects*
  • Extracellular Signal-Regulated MAP Kinases / metabolism
  • G2 Phase Cell Cycle Checkpoints / drug effects
  • Gene Expression Regulation, Neoplastic
  • Hep G2 Cells
  • Humans
  • Kelch-Like ECH-Associated Protein 1 / genetics
  • Kelch-Like ECH-Associated Protein 1 / metabolism
  • Liver Neoplasms / drug therapy*
  • Liver Neoplasms / genetics
  • Liver Neoplasms / metabolism
  • Liver Neoplasms / pathology
  • NF-E2-Related Factor 2 / metabolism*
  • Phosphorylation
  • Reactive Oxygen Species / metabolism
  • Signal Transduction

Substances

  • Antineoplastic Agents
  • KEAP1 protein, human
  • Kelch-Like ECH-Associated Protein 1
  • NF-E2-Related Factor 2
  • NFE2L2 protein, human
  • Reactive Oxygen Species
  • Extracellular Signal-Regulated MAP Kinases