Background: Severe acute respiratory syndrome virus 2 (SARS-CoV-2), likely a bat-origin coronavirus, spilled over from wildlife to humans in China in late 2019, manifesting as a respiratory disease. Coronavirus disease 2019 (COVID-19) spread initially within China and then globally, resulting in a pandemic.
Objective: This article describes predictive modelling of COVID-19 in general, and efforts within the Public Health Agency of Canada to model the effects of non-pharmaceutical interventions (NPIs) on transmission of SARS-CoV-2 in the Canadian population to support public health decisions.
Methods: The broad objectives of two modelling approaches, 1) an agent-based model and 2) a deterministic compartmental model, are described and a synopsis of studies is illustrated using a model developed in Analytica 5.3 software.
Results: Without intervention, more than 70% of the Canadian population may become infected. Non-pharmaceutical interventions, applied with an intensity insufficient to cause the epidemic to die out, reduce the attack rate to 50% or less, and the epidemic is longer with a lower peak. If NPIs are lifted early, the epidemic may rebound, resulting in high percentages (more than 70%) of the population affected. If NPIs are applied with intensity high enough to cause the epidemic to die out, the attack rate can be reduced to between 1% and 25% of the population.
Conclusion: Applying NPIs with intensity high enough to cause the epidemic to die out would seem to be the preferred choice. Lifting disruptive NPIs such as shut-downs must be accompanied by enhancements to other NPIs to prevent new introductions and to identify and control any new transmission chains.
Keywords: COVID-19; Canada; modelling; non-pharmaceutical interventions.