Background: Etoposide dosing is based on body surface area. We evaluated if further dose individualization would be required for high dose (HD) etoposide within the TI-CE (taxol, ifosfamide, carboplatin, and etoposide) protocol.
Methods: Eighty-eight patients received 400 mg/m2/day of etoposide as a 1-hour IV infusion on 3 consecutive days over 3 cycles as part of a phase II trial evaluating efficacy of therapeutic drug monitoring (TDM) of carboplatin in the TI-CE HD protocol. Pharmacokinetic (PK) data were analyzed using population PK model on NONMEM to quantify inter- and intra-individual variabilities. Relationship between etoposide exposure and pharmacodynamic (PD) endpoints, and between selected genetic polymorphisms and tumor response or toxicity were evaluated.
Results: The inter-patient, inter- and intra-cycle variabilities of clearance were 16%, 9% and 0.1%, respectively. The PK-PD relationship was not significant despite a trend toward higher etoposide exposure in patients responding to treatment. A significant correlation was found between exposure and extended neutropenia at cycle 3. A significant association between UGT1A1*28 polymorphism and late neutropenia was observed but needs further evaluation.
Conclusions: The present study suggests that neither a priori dose individualization nor dose adaptation using TDM is required validating body surface area dosing of etoposide in the TI-CE protocol.
Keywords: etoposide; germ cell tumors; high-dose regimen; pharmacogenetics; pharmacokinetics.