Alginate/human elastin-like polypeptide composite films with antioxidant properties for potential wound healing application

Int J Biol Macromol. 2020 Dec 1:164:586-596. doi: 10.1016/j.ijbiomac.2020.07.084. Epub 2020 Jul 15.

Abstract

In this contribution we describe the preparation and characterization of a series of cross-linked films based on the combination of an elastin-derived biomimetic polypeptide (Human Elastin-Like Polypeptide, HELP) with alginate (ALG) to obtain a composite with enhanced properties. ALG/HELP composite films loaded with the hydrophobic natural antioxidant curcumin were prepared by solvent casting method followed by the cross-linking with calcium chloride. The compatibility between the two components as well as the final properties was evaluated. The micro-morphological study of films showed a homogeneous structure, but the film tensile strength decrease with HELP content and elongation at break was adversely affected by biopolymer addition. Spectroscopic and thermal analyses confirmed an interaction between ALG and HELP which also causes a modification in swelling kinetics and faster degradation. Moreover, the study of curcumin release showed a controlled delivery up to 10 days with a faster release rate in the presence of HELP. Human Dermal Fibroblasts (hDF) were used to test the in vitro cytocompatibility. The antioxidant activity correlated to the increase of HELP content suggested the applicability of these composites to develop smart biomaterials. Overall, these features indicated how this composite material has considerable potential as customizable platforms for various biomedical applications.

Keywords: Alginate; Biomimetic material; Composite film; Drug delivery; Human Elastin-Like Polypeptide; Structural and thermal characterization.

MeSH terms

  • Alginates / chemistry*
  • Antioxidants / chemical synthesis*
  • Antioxidants / chemistry
  • Antioxidants / pharmacology
  • Biomimetic Materials / chemistry
  • Calorimetry, Differential Scanning
  • Cells, Cultured
  • Curcumin / chemical synthesis*
  • Curcumin / chemistry
  • Curcumin / pharmacology
  • Dermis / cytology*
  • Dermis / drug effects
  • Elastin / chemistry*
  • Fibroblasts / cytology
  • Fibroblasts / drug effects
  • Humans
  • Molecular Structure
  • Thermogravimetry
  • Wound Healing / drug effects

Substances

  • Alginates
  • Antioxidants
  • Elastin
  • Curcumin