Cervical cancer is primarily caused by persistent infection with high-risk human papillomavirus (HPV), and 70% of cases are associated with HPV16 and 18 infections. The objective of this study was to establish rapid, simple, and sensitive internally controlled recombinase-aided amplification (IC-RAA) assays for the detection of HPV16 and 18. The assays were performed at 39 ℃ and were completed within 30 min. A total of 277 clinical samples of exfoliated cervical cells were tested by IC-RAA assays and commercial HPV real-time fluorescent PCR kits using extracted DNA and samples treated with nucleic acid releasing agent. The analytical sensitivity of the IC-RAA assay was found to be 10 copies/μL for the detection of HPV16 and 18 when using recombinant plasmids as targets. The optimal concentration of the internal control (IC) plasmid and 18 was 1000 copies/μL for HPV16 and 100 copies/μL for HPV18. The clinical sensitivity of the IC-RAA assays for HPV16 using extracted DNA and samples treated with nucleic acid releasing agent was 98.73% and 97.47%, respectively, with kappa values of 0.977 (P < 0.01) and 0.955 (P < 0.01), respectively, and 100% The specificity in both cases. For HPV18, the sensitivity and specificity were 100%, and the kappa value was 1 for both samples (P < 0.01). The IC-RAA assay is a promising tool for the detection of HPV16 and HPV18, especially in resource-constrained settings.