Objectives: To examine the effects of a selective peroxisome proliferator-activated receptor (PPAR-α) agonist treatment on interscapular brown adipose tissue (iBAT) whitening, focusing on thermogenic, lipolysis, and lipid oxidation markers in mice fed a high-fat or high-fructose diet.
Methods: Fifty animals were randomly assigned to receive a control diet (C, 10% lipids as energy), high-fat diet (HF, 50% lipids as energy), or high-fructose diet (HFRU, 50% fructose as energy) for 12 wk. Each group was redivided to begin the 5-wk treatment, totaling five experimental groups: C, HF, HF-a, HFRU, and HFRU-a. The drug was mixed with diet at the dose of 3.5 mg/kg body mass.
Results: HF group was the heaviest group, and the HF and HFRU groups had glucose intolerance. PPAR-α activation alleviated these metabolic constraints. HF and HFRU groups had negative vascular endothelial growth factor A (VEGF-A) immunostaining, but only the HF group had a pattern of lipid droplet accumulation that resembled the white adipose tissue, characterizing the whitening phenomenon. Whitening in the HF group was accompanied by decreased expression of genes related to thermogenesis, β-oxidation, and antiinflammatory effects. All of them were augmented by the PPAR-α activation in HF-a and HFRU-a groups, countering the whitening in the HF-a group. Treated groups also had a lower respiratory exchange ratio than untreated groups, suggesting that lipids were used as fuel for the enhanced thermogenesis.
Conclusions: The PPAR-α agonist countered iBAT whitening by inducing the thermogenic pathway and reducing the lipid droplet size, in addition to enhanced VEGF-A expression, adrenergic stimulus, and lipolysis in HF-fed mice.
Keywords: Fructose; Interscapular brown adipose tissue; Obesity; PPAR-α; Thermogenesis; Whitening.
Copyright © 2020 Elsevier Inc. All rights reserved.