Purpose: The GX1 peptide (CGNSNPKSC) can specifically bind to TGM2 and possesses the ability to target the blood vessels of gastric cancer. This study intends to develop an integrated dual-functional probe with higher affinity, specificity and targeting and to characterize it in vivo and in vitro.
Methods: The dimer and tetramer of GX1 were prepared using cross-linked PEG and labeled with 99mTc. The best targeting probe [PEG-(GX1)2] was selected by gamma camera imaging in nude mouse models of gastric cancer. 188Re-PEG-(GX1)2 was prepared and characterized through cell binding analysis and competitive inhibition experiments, gamma camera imaging, MTT analysis and flow cytometry, BLI, immunohistochemistry, HE staining and biochemical analysis.
Results: PEG-(GX1)2 bound specifically to Co-HUVEC with higher affinity than GX1. 188Re-PEG-(GX1)2 had better ability to target gastric cancer in tumor-bearing nude mice and higher T/H ratios than 188Re-GX1. 188Re-PEG-(GX1)2 inhibited the growth of Co-HUVEC and induced apoptosis, and its effects were more robust than those of 188Re-GX1. BLI showed that 188Re-PEG-(GX1)2 inhibited tumor proliferation in vivo with a stronger effect than 188Re-GX1. Compared with 188Re-GX1, 188Re-PEG-(GX1)2 suppressed tumor angiogenesis and tumor cell proliferation and induced tumor cell apoptosis in vivo. The 188Re-PEG-(GX1)2 group did not cause visible changes in liver and kidney morphology and function in vivo.
Conclusion: The dimer of GX1 was synthesized by using cross-linked PEG, and then 188Re-PEG-(GX1)2 was prepared. This radiopharmaceutical played both diagnostic and therapeutic functions, and gamma camera imaging could be utilized to detect the distribution of drugs in vivo during treatment. Through a series of experiments in vitro and in vivo, the feasibility of the drug was confirmed, and these results laid the foundation for the subsequent development and application of GX1.
Keywords: (188)Re; Antiangiogenic therapy; GX1 dimer and TGM2; Gastric cancer.
Copyright © 2020 Elsevier B.V. All rights reserved.