The development of a label-free impedimetric aptasensor is reported for rapid and sensitive detection of Escherichia coli O157:H7 employing boron-carbon nanorods decorated by nickel nanoparticles (BC-Ni) nanostructured platform. These highly electroactive BC-Ni nanorods were synthesized to increase the sensitivity of the sensor surface and subsequently functionalized with a specific anti-E. coli O157:H7 aptamer (Kd = 69 nM) as bio-recognition moiety. This fully characterized high-affinity DNA aptamer against the bacteria was selected using a facile microtiter plate-based cell-SELEX methodology. The fabricated electrochemical aptasensor is demonstrated to detect E. coli O157:H7 selectively with a detection limit of 10 cfu and a dynamic detection range of 100 to 105 cfu in water, juice, and fecal samples. Graphical abstract.
Keywords: Aptasensor; Boron-carbon nanostructures; E. coli O157:H7; Nanosensor; Pathogen detection.