Hydraulic and chemical signalling in the regulation of stomatal conductance and plant water use in field grapevines growing under deficit irrigation

Funct Plant Biol. 2008 Sep;35(7):565-579. doi: 10.1071/FP08004.

Abstract

Effects of irrigation strategies on stomata and plant water use were studied in field-grown grapevines (Vitis vinifera L.). We assessed the importance of root-derived chemical signals vs. hydraulic signalling in stomatal regulation. The experiment included two treatments with the same water added to the soil (50% ETc) applied either to the whole root system (DI) or to half of the roots, alternating irrigation side every 15 days (PRD). Well-watered plants (FI) (100% ETc) and non-irrigated grapevines (NI) were also studied. Partial stomata closure occurred in both PRD and DI plants. [ABA] of xylem sap remained constant during the day and was maintained throughout the season, with higher values in NI plants. Xylem sap pH was not affected by soil water availability. A positive correlation between ψpd and maximum g s was found, indicating that grapevine stomata strongly respond to plant water status. In contrast, ABA did not explain stomatal control at veraison. At mid-ripening g s was significantly correlated with ABA, apparently interacting with the rise in xylem sap pH. Therefore, our data suggest that hydraulic feedback and feed-forward root-to-shoot chemical signalling mechanisms might be involved in the control of stomata in response to decreased soil water availability, hydraulic signals playing the dominant role.