Diversity and taxonomic affiliation of chickpea rhizobia were investigated from Ningxia in north central China and their genomic relationships were compared with those from northwestern adjacent regions (Gansu and Xinjiang). Rhizobia were isolated from root-nodules after trapping by chickpea grown in soils from a single site of Ningxia and typed by IGS PCR-RFLP. Representative strains were phylogenetically analyzed on the basis of the 16S rRNA, housekeeping (atpD, recA and glnII) and symbiosis (nodC and nifH) genes. Genetic differentiation and gene flow were estimated among the chickpea microsymbionts from Ningxia, Gansu and Xinjiang. Fifty chickpea rhizobial isolates were obtained and identified as Mesorhizobium muleiense. Their symbiosis genes nodC and nifH were highly similar (98.4 to 100%) to those of other chickpea microsymbionts, except for one representative strain (NG24) that showed low nifH similarities with all the defined Mesorhizobium species. The rhizobial population from Ningxia was genetically similar to that from Gansu, but different from that in Xinjiang as shown by high chromosomal gene flow/low differentiation with the Gansu population but the reverse with the Xinjiang population. This reveals a biogeographic pattern with two main populations in M. muleiense, the Xinjiang population being chromosomally differentiated from Ningxia-Gansu one. M. muleiense was found as the sole main chickpea-nodulating rhizobial symbiont of Ningxia and it was also found in Gansu sharing alkaline-saline soils with Ningxia. Introduction of chickpea in recently cultivated areas in China seems to select from alkaline-saline soils of M. muleiense that acquired symbiotic genes from symbiovar ciceri.
Keywords: Alkaline soils.; Cicer arietinum L; Genotyping; Mesorhizobium muleiense; Phylogeny; Symbiosis.
Copyright © 2020 Elsevier GmbH. All rights reserved.