The left and right distribution of a set of twenty-six genes in the zebrafish pallium was examined by RT-qPCR experiments. The analysis comprised four general pallial markers (eomesa, emx2, emx3 and prox1); eight genes, dapper1, htr3a, htr3b, htr4, id2, ndr2, pkcβ and lmo4, that have been described as asymmetric distributed in the brain of mammals (human and mouse); six genes, arrb2, auts2, baiap2, fez1, gap43 and robo1, asymmetrically distributed in the mammalian cortex, that have been associated with autism in humans; and, eight genes, baz1b, fzd9, limk1, tubgcp5, cyfip1, grik1a, nipa1 and nipa2, which have been associated with developmental dyscalculia, a brain disability linked to brain laterality in humans. We found a leftward bias in the expression of 10 genes (dapper1, htr3a, htr3b, htr4, id2, ndr2, pkcß, auts2, baiap2 and grik1a) and a rightward bias for 5 genes (lmo4, arrb2, fez1, gap43, robo1) in agreement with the data reported in mammals. We also found a rightward lateralization for nipa1 and nipa2, whereas the remaining genes (eomesa, emx2, emx3, prox1, baz1b, cyfip1, fzd9, limk1 and tubgpc5) were bilaterally distributed. These findings suggest a basic homology in the asymmetric expression of several pallial vertebrate genes.
Keywords: Danio rerio; autism-related genes; brain asymmetry; developmental dyscalculia-related genes; telencephalic lateralization.
© 2020 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.