The Covalent and Coordination Co-Driven Assembly of Supramolecular Octahedral Cages with Controllable Degree of Distortion

J Am Chem Soc. 2020 Aug 5;142(31):13356-13361. doi: 10.1021/jacs.0c07014. Epub 2020 Jul 24.

Abstract

Discovering and constructing novel and fancy structures is the goal of many supramolecular chemists. In this work, we propose an assembly strategy based on the synergistic effect of coordination and covalent interactions to construct a set of octahedral supramolecular cages and adjust their degree of distortion. Our strategy innovatively utilizes the addition of sulfur atoms of a metal sulfide synthon, [Et4N][Tp*WS3] (A), to an alkynyl group of a pyridine-containing linker, resulting in a novel vertex with low symmetry, and of Cu(I) ions. By adjusting the length of the linker and the position of the reactive alkynyl group, the control of the deformation degree of the octahedral cages can be realized. These supramolecular cages exhibit enhanced third-order nonlinear optical (NLO) responses. The results offer a powerful strategy to construct novel distorted cage structures as well as control the degree of distortion of supramolecular geometries.