The dichotomy index (I < O), a quantitative estimate of the circadian regulation of daytime activity and sleep, predicted overall cancer survival and emergency hospitalization, supporting its integration in a mHealth platform. Modifiable causes of I < O deterioration below 97.5%-(I < O)low-were sought in 25 gastrointestinal cancer patients and 33 age- and sex-stratified controls. Rest-activity and temperature were tele-monitored with a wireless chest sensor, while daily activities, meals, and sleep were self-reported for one week. Salivary cortisol rhythm and dim light melatonin onset (DLMO) were determined. Circadian parameters were estimated using Hidden Markov modelling, and spectral analysis. Actionable predictors of (I < O)low were identified through correlation and regression analyses. Median compliance with protocol exceeded 95%. Circadian disruption-(I < O)low-was identified in 13 (52%) patients and four (12%) controls (p = 0.002). Cancer patients with (I < O)low had lower median activity counts, worse fragmented sleep, and an abnormal or no circadian temperature rhythm compared to patients with I < O exceeding 97.5%-(I < O)high-(p < 0.012). Six (I < O)low patients had newly-diagnosed sleep conditions. Altered circadian coordination of rest-activity and chest surface temperature, physical inactivity, and irregular sleep were identified as modifiable determinants of (I < O)low. Circadian rhythm and sleep tele-monitoring results support the design of specific interventions to improve outcomes within a patient-centered systems approach to health care.
Keywords: age; biomarkers; circadian regulation; circadian rhythms; cortisol; gastro-intestinal cancer; melatonin; patient-reported outcome measures; sex; sleep.