In the present study, a pterostilbene-peptide amphiphile (PS-GA-RGD) that can spontaneously self-assemble into prodrug nanomedicine, was rationally designed and developed as a novel ophthalmic formulation for the potential management of dry eye. The formed PS-GA-RGD nanomedicine was characterized by dynamic latter scattering (DLS) and transmission electron microscopy (TEM). After esterase treatment, active pterostilbene (PS) sustainably released from the PS-GA-RGD nanomedicine within 48 h, as indicated by an in vitro release study. In comparison with native PS, the formed PS-GA-RGD nanomedicine caused minimal cytotoxicity towards RAW 264.7 and HCEC cells in the 0-20 μM range and did not delay wound healing of HCEC monolayer within 6 h. Furthermore, PS-GA-RGD nanomedicine effectively reduced the intracellular reactive oxygen species (ROS) level in H2O2 challenged RAW264.7 macrophages and remarkably suppressed the secretion of inflammatory cytokines (e.g., NO, TNF-α, and IL-6) in lipopolysaccharide (LPS) activated RAW264.7 macrophages. Ocular tolerance to the proposed PS-GA-RGD nanomedicine was good after a single instillation in in vivo ocular irritation tests. Overall, the proposed PS-GA-RGD nanomedicine had potent anti-oxidant capacity and anti-inflammatory efficacy, which may be a promising ophthalmic formulation for the management of dry eye.
Keywords: Anti-inflammtory; Anti-oxidant; Dry eye; Ocular drug delivery; Prodrug nanomedicine.
Copyright © 2020 Elsevier B.V. All rights reserved.