GPU implementation of photoacoustic short-lag spatial coherence imaging for improved image-guided interventions

J Biomed Opt. 2020 Jul;25(7):1-19. doi: 10.1117/1.JBO.25.7.077002.

Abstract

Significance: Photoacoustic-based visual servoing is a promising technique for surgical tool tip tracking and automated visualization of photoacoustic targets during interventional procedures. However, one outstanding challenge has been the reliability of obtaining segmentations using low-energy light sources that operate within existing laser safety limits.

Aim: We developed the first known graphical processing unit (GPU)-based real-time implementation of short-lag spatial coherence (SLSC) beamforming for photoacoustic imaging and applied this real-time algorithm to improve signal segmentation during photoacoustic-based visual servoing with low-energy lasers.

Approach: A 1-mm-core-diameter optical fiber was inserted into ex vivo bovine tissue. Photoacoustic-based visual servoing was implemented as the fiber was manually displaced by a translation stage, which provided ground truth measurements of the fiber displacement. GPU-SLSC results were compared with a central processing unit (CPU)-SLSC approach and an amplitude-based delay-and-sum (DAS) beamforming approach. Performance was additionally evaluated with in vivo cardiac data.

Results: The GPU-SLSC implementation achieved frame rates up to 41.2 Hz, representing a factor of 348 speedup when compared with offline CPU-SLSC. In addition, GPU-SLSC successfully recovered low-energy signals (i.e., ≤268 μJ) with mean ± standard deviation of signal-to-noise ratios of 11.2 ± 2.4 (compared with 3.5 ± 0.8 with conventional DAS beamforming). When energies were lower than the safety limit for skin (i.e., 394.6 μJ for 900-nm wavelength laser light), the median and interquartile range (IQR) of visual servoing tracking errors obtained with GPU-SLSC were 0.64 and 0.52 mm, respectively (which were lower than the median and IQR obtained with DAS by 1.39 and 8.45 mm, respectively). GPU-SLSC additionally reduced the percentage of failed segmentations when applied to in vivo cardiac data.

Conclusions: Results are promising for the use of low-energy, miniaturized lasers to perform GPU-SLSC photoacoustic-based visual servoing in the operating room with laser pulse repetition frequencies as high as 41.2 Hz.

Keywords: coherence-based beamforming; graphical processing unit; photoacoustic; real-time; visual servoing.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Algorithms*
  • Animals
  • Cattle
  • Diagnostic Imaging
  • Phantoms, Imaging
  • Photoacoustic Techniques*
  • Reproducibility of Results
  • Signal-To-Noise Ratio
  • Ultrasonography