Oculoauriculovertebral spectrum (OAVS) is a rare class of heterogenous congenital craniofacial malformation conditions of unknown etiology. Although classic OAVS has been described as hemifacial microsomia with facial asymmetry and microtia, there is no consensus regarding clinical criteria for diagnosis or genetic cause. This systematic review aims to assess the applicability of high-resolution (HR) karyotype, fluorescence in situ hybridization, multiplex ligation-dependent probe amplification (MLPA), and microarray-based comparative genomic hybridization (array-CGH) for differential diagnosis of OAVS. A search was performed in PubMed and Web of Science using all entry terms to the following descriptors: Goldenhar's syndrome, cytogenetic analysis, hybridization in situ, fluorescent, comparative genomic hybridization, multiplex polymerase chain reaction, whole genome sequencing, and karyotype analysis methods. After screening, 25 articles met eligibility. Of the included studies, 59 individuals had a genetic alteration identified. Array-CGH, MLPA, and HR karyotype appear to be viable approaches for molecular diagnosis in OAVS. Heterogeneity is a hallmark of OAVS. Establishing an enhanced framework for diagnosis would inform clinical decision making, and better resource utilization could improve health care facility efficiency and economy.
Keywords: Goldenhar's syndrome; OAVS; comparative genomic hybridization.
© Thieme Medical Publishers.