Background: Inflammation persists among persons with human immunodeficiency virus (PWH) despite effective antiretroviral therapy and may contribute to T-cell dysfunction. Alcohol use is prevalent among PWH and promotes intestinal leak, dysbiosis, and a proinflammatory milieu. Whether alcohol use is associated with T-cell late differentiation remains to be investigated.
Methods: Data and samples from PWH (N = 359 of 365) enrolled in the New Orleans Alcohol Use in HIV Study were used. Alcohol use was assessed by self-report (Alcohol Use Disorders Identification Test; lifetime alcohol exposure; 30-day Alcohol Timeline Followback) and phosphatidylethanol (PEth) quantitation. In a subset of participants, fecal bacterial content was assessed by ribosomal 16S marker gene deep sequencing and quantitative polymerase chain reaction. Intestinal leak was assessed by fecal-to-plasma α-1-antitrypsin (A1AT) enzyme-linked immunosorbent assay ratio. Peripheral T-cell populations were quantified by flow cytometry.
Results: Alcohol Use Disorder Identification Test scores were positively associated with activated-senescent, exhausted, and terminal effector memory CD45RA+CD8+ but not CD4+ T cells (cells/μL) after confounder adjustment (P < .050). Phosphatidylethanol was positively associated with A1AT (P < .050). The PEth and activated-senescent CD8+ were associated with bacterial β-diversity (P < .050) and positively associated with the relative abundance of coabundant Prevotellaceae members (q < .100).
Conclusions: Alcohol use among PWH is associated with CD8+ T-cell late differentiation, intestinal leak, and dysbiosis. Alcohol-associated dysbiosis is implicated in CD8+ T-cell senescence.
Keywords: HIV; T cells; alcohol; dysbiosis; senescence.
© The Author(s) 2020. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: [email protected].